
Random numbers
Hashes

Cryptography for Software and Web Developers
Part 4: randomness, hashing, tokens

Hanno Böck

2014-05-28

1 / 13



Random numbers
Hashes

Bad random numbers
Random fails
Example: Factoring RSA keys
Good / bad randomness

I In security (not just crypto) we often need random numbers

I Examples: CSRF-tokens, one-time-action tokens, password
salts, key generation, ...

I There’s even crypto out there that needs good random
numbers to run or it’ll completely break: DSA, ECDSA (but
better avoid that).

I Good randomness is hard

2 / 13



Random numbers
Hashes

Bad random numbers
Random fails
Example: Factoring RSA keys
Good / bad randomness

I OS or programming language default random functions often
not secure random numbers.

I Rounding problems, conversion problems can reduce space of
possible random numbers vastly.

I 2008 Debian OpenSSL bug.

I PRNGs need a seed or they don’t work.

I NSA managed to make a backdoored RNG an official
standard and payed RSA Inc. 10 Million $ to make it the
default in BSAFE

I No way to test random numbers reliably.

3 / 13



Random numbers
Hashes

Bad random numbers
Random fails
Example: Factoring RSA keys
Good / bad randomness

I An RSA public key consists of an exponent e and a modulus
N which is the product of two primes

I If you know the primes you can get the private key

I What happens if we have two RSA keys with a shared prime,
e. g. N1 = p ∗ q1, N2 = p ∗ q2? You can break this key with
the greatest common divisor algorithm.

I Some people tried this with lots of SSH and TLS keys and
found over 50 embedded devices that created such factorable
keys. [url]

I Linux seed sources: HD timings, keyboard strokes, mouse
movements. Embedded devices often have no HD, no
keyboard, no mouse.

4 / 13



Random numbers
Hashes

Bad random numbers
Random fails
Example: Factoring RSA keys
Good / bad randomness

I PHP good: openssl random pseudo bytes(), PHP bad:
mt rand(), rand(), uniqid()

I JavaScript good: window.crypto.getRandomValues(), bad:
Math.random() (only latest browser support
window.crypto.getRandomValues())

I /dev/urandom is good if it is properly seeded. For embedded
devices: Better create the keys on a desktop PC.

5 / 13



Random numbers
Hashes

Simple hashes
Cryptographic hashes
Problems with MD5, SHA1
Passwords
Password hash functions
A note on password hashes
Sources

I So many people have wrong ideas about hashes...

I Completely typical situation: I write about cryptographic
hashes, people in the comments discuss about password
hashes and salting

I Hashes used in many contexts: error detection (CRC32),
signatures (SHA256, SHA516), passwords (bcrypt, scrypt)

I If you use a hash function you need to know what it should do

6 / 13



Random numbers
Hashes

Simple hashes
Cryptographic hashes
Problems with MD5, SHA1
Passwords
Password hash functions
A note on password hashes
Sources

I CRC32: Very fast, no security at all

I Reliably detects errors, but trivial to construct another input
for an existing hash

I Usable only for errors and if no attacker is involved (e. g.
error detection on hard disks or file comparison over otherwise
secure network connections).

7 / 13



Random numbers
Hashes

Simple hashes
Cryptographic hashes
Problems with MD5, SHA1
Passwords
Password hash functions
A note on password hashes
Sources

I Cryptographic hashes need to be collision resistant and
preimage resistant

I Collision: It should be practically impossible to create two
different inputs with same hash

I Preimage: It should be practically impossible to create an
input for a given hash value.

I Used in many places, e. g. signatures

I Some crypto protocols need hashes and don’t have collision
resistance requirement (e. g. HMAC), but that’s usually not
something that should bother you

8 / 13



Random numbers
Hashes

Simple hashes
Cryptographic hashes
Problems with MD5, SHA1
Passwords
Password hash functions
A note on password hashes
Sources

I In 2004/2005 big breakthroughs on hash attacks, mostly the
work of a Chinese team led by Wang Xiaoyun.

I Most important results: practical collision attacks on MD5,
almost practical attacks on SHA1

I 2008: MD5 attack on RapidSSL leads to fake CA, 2012:
Flame worm uses MD5 attack to create rogue code signing
cert

I SHA-2 functions (SHA256, SHA512) considered safe today,
SHA-3 will come soon.

9 / 13



Random numbers
Hashes

Simple hashes
Cryptographic hashes
Problems with MD5, SHA1
Passwords
Password hash functions
A note on password hashes
Sources

I Idea: We don’t save passwords, we just save hashes so if our
database gets stolen the attacker has no direct access to the
passwords

I Attackers can brute force

I Salting makes it harder

I Security requirements for password hashes completely different
from cryptographic hash functions

I Collision resistance doesn’t matter, they should ideally not be
fast

10 / 13



Random numbers
Hashes

Simple hashes
Cryptographic hashes
Problems with MD5, SHA1
Passwords
Password hash functions
A note on password hashes
Sources

I glibc uses several iterations of cryptographic hashes (default
SHA512) and a salt.

I bcrypt and scrypt are functions designed to be password
hashes. bcrypt is designed to be slow, scrypt is designed to be
slow and use lots of memory.

I There’s a Password Hashing Competition (PHC), results
expected in 2015.

11 / 13



Random numbers
Hashes

Simple hashes
Cryptographic hashes
Problems with MD5, SHA1
Passwords
Password hash functions
A note on password hashes
Sources

I The importance of secure password hashing is IMHO vastly
overstated.

I glibc-type SHA512, bcrypt, scrypt are all ”good enough”, just
make sure you have a salt.

I Password hashing only gives you a tiny little bit of extra
protection if your database gets stolen. But if that happens
you’re screwed anyway.

I Make sure nobody steals your database. That’s much more
important.

12 / 13



Random numbers
Hashes

Simple hashes
Cryptographic hashes
Problems with MD5, SHA1
Passwords
Password hash functions
A note on password hashes
Sources

I Factorable RSA keys https://factorable.net/

http://media.ccc.de/browse/congress/2012/

29c3-5275-en-facthacks_h264.html

I Password Hashing Competition
https://password-hashing.net/

13 / 13

https://factorable.net/
http://media.ccc.de/browse/congress/2012/29c3-5275-en-facthacks_h264.html
http://media.ccc.de/browse/congress/2012/29c3-5275-en-facthacks_h264.html
https://password-hashing.net/

	Random numbers
	Bad random numbers
	Random fails
	Example: Factoring RSA keys
	Good / bad randomness

	Hashes
	Simple hashes
	Cryptographic hashes
	Problems with MD5, SHA1
	Passwords
	Password hash functions
	A note on password hashes
	Sources


