A look at the PGP keyserver data

Hanno Böck

The PGP Ecosystem Should we care? PGP problems Is PGP here to stay? Conclusion

イロト イポト イヨト イヨト

2/23

The PGP Ecosystem

- The OpenPGP standard (RFC 4880)
- Software packages (Original PGP, GnuPG, endtoend, ...)
- Key servers (today mostly sks)
- When I say PGP I mean the "PGP ecosystem" (software, standards etc.), not the PGP software product itself

The PGP Ecosystem Should we care? PGP problems Is PGP here to stay? Conclusion

・ロト ・回ト ・モト ・モト

3/23

Should we care?

- 'Why is GPG "damn near unusable"?' (31C3)
- "In the 1990s, I was excited about the future, and I dreamed of a world where everyone would install GPG. Now I'm still excited about the future, but I dream of a world where I can uninstall it." (Moxie Marlinspike)
- "Please throw some money to the GPG guy. Even though PGP sucks, it's the best we've got." (Matthew Green)

The PGP Ecosystem Should we care? PGP problems Is PGP here to stay? Conclusion

PGP problems

- Crypto is outdated, some of that is not fixable within the current model (Forward secrecy)
- PGP is and has always been "damn near unusable"
- Lots of backwards compatibility cruft, complex format, limited software options (no library)
- No subject encryption
- Two competing mail formats (PGP/MIME and PGP/Inline) each with its own advantages and disadvantages
- The trust model (web-of-trust, key signing) is incomprehensible for everyone outside the geek cosmos

イロト イポト イヨト イヨト

The PGP Ecosystem Should we care? PGP problems Is PGP here to stay? Conclusion

イロト イポト イヨト イヨト

5/23

Is PGP here to stay?

- Google and Yahoo work on PGP-based solutions (endtoend)
- Nothing currently seeks to replace it in the E-Mail space
- Systems like Textsecure and Pond are technically superior, but they're not built to replace E-Mail

The PGP Ecosystem Should we care? PGP problems Is PGP here to stay? Conclusion

Conclusion

- I hate PGP, but I still try to make it better
- Fuzzing GnuPG found various vulnerabilities (CVE-2014-9087, CVE-2015-1606, CVE-2015-1607)
- Made proposal for subject encryption (a variant of it developed by Daniel Kahn Gillmor may land in Enigmail)
- I looked at the keyserver data to find crypto attacks (this talk)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

6/23

The Idea Inspiration Look at keyserver data Parser challenges Database challenges How does it work? How does it look like? What data?

・ロト ・回ト ・モト ・モト

7/23

The Idea

- PGP key servers store all keys ever sent to them on an add only basis
- You can't delete keys from key servers, you can just revoke them
- This leads to all kinds of potential problems (keyservers can be flooded with bogus data, privacy issues, ...)
- Crypto researchers perspective: Great, lots of data to investigate.

The Idea Inspiration Look at keyserver data Parser challenges Database challenges How does it work? How does it look like? What data?

< ロ > < 同 > < 回 > < 回 >

8/23

Inspiration

- EFF SSL Observatory (2010)
- Mining Your Ps and Qs (Nadia Heninger et al, 2012)

The Idea Inspiration Look at keyserver data Parser challenges Database challenges How does it work? How does it look like? What data?

Look at keyserver data

- Large scale analysis of Internet wide scans for TLS certificate found crypto vulnerabilities
- For PGP we don't have to scan the Internet we can get the data from the keyservers
- Let's put the crypto values in a database and analyze it

Introduction Keyserver data Attacking bad random numbers Thanks Introduction Keyserver data Database challenges How does it look like? What data?

Parser challenges

- Lack of software: There is no low-level library to parse PGP key data
- pgpdump: Command line tool, doesn't give us all the data we want
- I wrote my own parser in python (warning: I'm not a good coder, the code looks horrible, but it works)
- keyr (abbr for key parser) will take keyserver data and output MySQL statements

・ロト ・回ト ・モト ・モト

The Idea Inspiration Look at keyserver data Parser challenges Database challenges How does it work? How does it look like? What data?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Database challenges

- Large database (84 GB), careful adjustments of parameters (e. g. indexes)
- Used MyISAM, MySQL 5.6 and tcmalloc (improved memory allocator from Google)
- Increased values for max_allowed_packet, key_buffer_size, wait_timeout, interactive_timeout
- (Warning: My MySQL knowledge is limited)

The Idea Inspiration Look at keyserver data Parser challenges Database challenges How does it work? How does it look like? What data?

How does it work?

- Download keyserver dump, unpack if neccessary
- Create database and tables from keyr-tables.sql
- Run keyr on keyserver dump files, pipe output to MySQL

The Idea Inspiration Look at keyserver data Parser challenges Database challenges How does it work? **How does it look like?** What data?

How does it look like?

id	keyid	keyid_short	keyid_master	rsa_n	rsa_e	rsa_bits	ver	sub	errors	file
1	681d3a753b6c249e	3b6c249e	681d3a753b6c249e	cc2fd9d011aa7e6	010001	4096	4	0		sks-dump-0000.pgp
2	e8a53b713ba1a13e	3balal3e	681d3a753b6c249e	b1caa684b085e6	010001	4096	4	1		sks-dump-0000.pgp
3	ce040c74f9a3f1dd	f9a3f1dd	ce040c74f9a3f1dd	bc4e17ab58a7c3l	010001	1024	3	0		sks-dump-0000.pgp
4	c56c3caa9995bde7	9995bde7	c56c3caa9995bde7	ce5c68d84db34e'	010001	2048	4	0		sks-dump-0000.pgp
5	8f38a91bb2f768b8	b2f768b8	c56c3caa9995bde7	dc9bda82490608	010001	2048	4	1		sks-dump-0000.pgp
6	bdab86311ea5de89	1ea5de89	bdab86311ea5de89	b77f13820f56011	11	1024	3	0		sks-dump-0000.pgp
7	5964884db64c74f1	b64c74f1	5964884db64c74f1	add498a0b7f80f7	010001	2048	4	0		sks-dump-0000.pgp
8	db6bf5d7096c9858	096c9858	5964884db64c74f1	dd32e94f23a4215	010001	2048	4	1		sks-dump-0000.pgp
9	de0f188a5da5e3c9	5da5e3c9	de0f188a5da5e3c9	d6ac00d92b89c11	11	1024	2	0		sks-dump-0000.pgp
10	6ebee4263f9061ab	3f9061ab	6ebee4263f9061ab	a350484702343d	11	2048	3	0		sks-dump-0000.pgp
11	34455afcd61e9601	d61e9601	34455afcd61e9601	9853b6de08ed10	11	1024	3	0		sks-dump-0000.pgp
12	3f321e334428ae5f	4428ae5f	3f321e334428ae5f	f8f450594a5ab28	010001	2048	4	0		sks-dump-0000.pgp
13	a7d48cd9ba57e19c	ba57e19c	a7d48cd9ba57e19c	fc1fa7c3dc8ed6f4	010001	2048	4	0		sks-dump-0000.pgp
14	49c2abee3a1582b8	3a1582b8	a7d48cd9ba57e19c	cdfb03c755d820c	010001	2048	4	1		sks-dump-0000.pgp
15	54119a80a8e5fe8e	a8e5fe8e	54119a80a8e5fe8e	a64f2f32414f362	010001	2048	4	0		sks-dump-0000.pgp
16	2d6cf76a9e2d1897	9e2d1897	54119a80a8e5fe8e	94f38167e0c622:	010001	2048	4	1		sks-dump-0000.pgp

ि ० ३ ०००

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のの(

Attacking bad random numbers Thanks T

What data?

- Keys and signatures splittet into their hex encoded crypto values
- Hashes for signatures
- Rememer: Crypto keys and signatures are just numbers
- Ignored: User ID strings etc. everything that's not crypto/math

	Attack Idea: RSA
	Batch GCD
Introduction	DSA is common
Keyserver data	DSA duplicate k
Attacking bad random numbers	Lots of DSA keys and signatures
Thanks	Give me duplicate r's
	The broken key
	What could be done next?

Attack idea: RSA

- RSA public key: Modulus N (product of primes p, q) and exponent e
- If we know p and q we can break the key
- If due to a bad random number generator two RSA keys share one factor of N (p*q1, p*q2) we can efficiently break the keys by calculating the greatest common divisor (GCD)

(1)

15/23

• Same attack as Heninger et al and Lenstra et al (2012)

Batch GCD DSA is common DSA duplicate k Lots of DSA keys and signatures Give me duplicate r's
DSA duplicate k
Give me duplicate r's
The broken key
What could be done next?

Batch GCD

- We can replicate the attack with the code from Nadia Heninger, but no new insights
- Leads to two valid looking breakable keys, reason unknown
- Various obviously broken keys (small factors, no user ids etc.)
 the key servers are full of invalid data, likely due to data transmission errors

	Attack Idea. NSA
	Batch GCD
Introduction	DSA is common
Keyserver data	DSA duplicate k
Attacking bad random numbers	Lots of DSA keys and signatures
Thanks	
	The broken key

DSA is common

- GnuPG by default created primary DSA keys with 1024 bit for a long time
- 1024 bit is considered bad, it can be broken by attackers with a large budget
- I don't have millions of euros and no degree in advanced number theroy
- But: DSA has a weakness when it comes to random numbers

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

17/23

	Batch GCD
Introduction	DSA is common
Keyserver data	DSA duplicate k
Attacking bad random numbers	Lots of DSA keys and signatures
Thanks	
	The broken key

DSA duplicate k

- When creating a DSA signature one has to create a temporary, random and unique value k
- If two signatures where created with the same k it leads to the same r, so we can easily find these signatures
- If due to bad random numbers we have two different signatures with a shared k/r value we can break the private key
- This is a real problem: Attack on Playstation 3 and Bitcoin stealing

	Batch GCD
Introduction	DSA is common
Keyserver data	DSA duplicate k
Attacking bad random numbers	Lots of DSA keys and signatures
Thanks	
	The broken key
	What could be done next?

Lots of DSA keys and signatures

- We have lots of DSA keys and signatures if there ever was a PGP DSA implementation with a flawed random number generator we will probably find it
- A look at the code of original PGP and GnuPG shows that the developers knew of this problem and did a lot of things to prevent it from happening

<ロ> <同> <同> < 同> < 同>

19/23

	Attack idea: RSA
	Batch GCD
Introduction	DSA is common
Keyserver data	DSA duplicate k
Attacking bad random numbers	Lots of DSA keys and signatures
Thanks	Give me duplicate r's
	The broken key
	What could be done next?

Give me duplicate r's

- Let MySQL do the work:
- SELECT a.keyid, a.dsa_r, a.dsa_s, b.dsa_s, a.hash, b.hash, c.dsa_p, c.dsa_q, c.dsa_g, c.dsa_y FROM sigs_dsa a JOIN sigs_dsa b JOIN keys_dsa c ON a.dsa_r = b.dsa_r AND a.dsa_s j¿ b.dsa_s AND a.keyid = c.keyid GROUP BY a.dsa_r;
- We get around 350 duplicates, but most don't lead to working keys again lots of invalid data
- One key fails
- Checking ECDSA (same vuln) gives no results

イロト 不得 とくほ とくほう

	Batch GCD
Introduction	DSA is common
Keyserver data	DSA duplicate k
Attacking bad random numbers	Lots of DSA keys and signatures
Thanks	
	The broken key

The broken key

- The key belongs to a developer of the company PrimeFactors
- Answer from PrimeFactors: Test keys created during development.
- "our shipping product versions use the Blum-Blum-Shub generator which does not suffer from the problem you mention."
- This doesn't completely make sense.
- Request for NDA prevented further analysis.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Keysenver data	Attack Idea: RSA Batch GCD DSA is common DSA duplicate k
Keyserver data Keyserver data Attacking bad random numbers Thanks	DSA duplicate k Lots of DSA keys and signatures Give me duplicate r's The broken key What could be done next?

What could be done next?

- We only checked the signatures on the key severs mailing list archives could be scanned for DSA signatures on mails (non-trivial)
- Other crypto attacks that work on large scale data sets? Ideas welcome.

Thanks! Questions? Code and background paper will be released: https://github.com/hannob/pgpecosystem/

