

SSL, X.509, HTTPS

How to configure your HTTPS server

Hanno Böck, http://hboeck.de/

HTTPS

● It's complex
● Two protocols involving crypto – X.509 (for the

certificates) and SSL/TLS (for the data
transport)

● Many things can go wrong
● Often issues in the protocols themselves, not

just application bugs
● Test by Qualys:

https://www.ssllabs.com/ssltest/

The Problem

● I configured a host with everything like “you
want it to be – as secure as possible”:
https://fancyssl.hboeck.de/

● But you won't be able to access it – at least
not if you're using Internet Explorer, Firefox,
Chrome, Safari, Opera or the Android-Browser

● w3m and lynx work
● If you don't want to wait till your browser

supports modern ssl standards:
http://fancynossl.hboeck.de/

X.509

CA

signs cert

HTTPS
Server

shows certUser

SSL / TLS

Session key

The certificate

● Contains public key
● Can be RSA, DSA, ECDSA, RSA-PSS...

(NTRU draft) – but in practice it's RSA
● Key length below 1024 (512 bit, 768 bit) –

you're screwed
● Key length 1024 bit – not good (CAcert still

allows it)
● Low exponents (like e=3, e=5) – can cause

issues, but only if implementation is broken –
better use e = 65537 (default today)

RSA – random numbers?

● Did you create your key with openssl on
Debian/Ubuntu between 2006 and 2008?

● They accidently reduced randomness to PID
resulting in 15 bit key entropy

● Batch GCD-attack found 0,2 % of keys
factorable due to multiple keys using same
primes

● Check it: https://factorable.net/ (29C3
“FactHacks” talk)

Hashes

● MD5 almost-broken since 1996, broken 2004
● But some people had to learn it the hard way –

2008 fake RapidSSL subcert (25C3 talk: “MD5
considered harmful today”), FLAME-virus
attacked Windows Update via MD5

● SHA1 almost-broken since 2004, broken 201X
● But some people will learn it the hard way

(like, for example, CAcert.org)
● For now, SHA-2 (SHA256, SHA512 etc.) is

good, SHA-3 not yet usable

CAcert signatures

MD5

root

MD5

class3

User cert
SHA1

Before 06/2011 After 06/2011

SHA256

root

MD5

class3

User cert
SHA1

From SSLv1 to TLSv1.2

● SSL by Netscape
● SSLv2 (1995) is heavily broken, disabled in

most apps today, replaced by SSLv3 (1996)
● TLS – successor of SSL, standard by IETF
● TLS 1.0 (1999), 1.1 (2006), 1.2 (2008)
● TLS 1.0 somewhat broken, TLS 1.1 not good
● If you want to avoid SHA1 you need TLS 1.2
● BUT: Browser support widely only TLS 1.0

SSL-Algorithms

● ECDHE-RSA-AES256-GCM-SHA384
● This means: RSA-signed key exchange with

Elliptic Curve Ephemeral DH, symmetric AES
encryption with 256 bit, Galois/Counter Mode,
SHA384 hash

● RC4-SHA
● This means: RSA-signed symmetric RC4

encryption with SHA1 hash

Problems

● If the server provides many algos, user may
choose weak ones – out of server admins
control

● If the server is restrictive, connections may fail
(old browsers)

● Fine-granular tuning sometimes impossible in
common software like Apache

● In theory, everyone wants TLS 1.2 to avoid
MD5/SHA1. In practice, almost nothing
supports TLS 1.2.

Key exchange

● Key exchange – create session key that never
gets transmitted

● Diffie Hellman or Elliptic Curve Diffie Hellman
● Provides Perfect Forward Secrecy
● If at some point in the future your server key

gets compromised, attacker cannot decrypt
previously recorded messages

● Problem: Apache defaults to 1024 bit DH and
this cannot be changed (experimental patch)

BEAST-attack

● BEAST-attack against AES in CBC mode
● Weakness was known for a long time, but

impractical – BEAST-attack just brought it to
the real world

● Fixed in TLS 1.1 (but: the browsers...)
● Mitigation – client-side
● Server can offer RC4-ciphers (unaffected)
● But: RC4+DHE not well supported (no forward

secrecy)

Apache config

● This is my Qualys-100 points setting:
SSLProtocol -SSLv2 -SSLv3 -TLSv1 -TLSv1.1
+TLSv1.2
SSLCipherSuite TLSv1:!AES128:!AES256-
GCM-SHA384:!AES256-SHA256:!SSLv3:!
SSLv2:HIGH:!MEDIUM:!MD5:!LOW:!EXP:!
NULL:!aNULL@STRENGTH

Apache config

● A more reasonable setting:

SSLProtocol -SSLv2 -SSLv3 +TLSv1 +TLSv1.1
+TLSv1.2

SSLHonorCipherOrder on

SSLCipherSuite ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-RSA-AES256-GCM-
SHA384:ECDH-RSA-AES256-GCM-
SHA384:ECDH-ECDSA-AES256-GCM-
SHA384:ECDH-RSA-RC4-SHA:RC4-SHA:TLSv1:!
AES128:!3DES:!CAMELLIA:!
SSLv2:HIGH:MEDIUM:!MD5:!LOW:!EXP:!NULL:!
aNULL

TLS Compression / CRIME attack

● CRIME attack by the authors of the BEAST
attack

● TLSCompression is broken
● But nobody uses it anyway (limited browser

support), so just disable it
● Apache Config (only 2.4 / unreleased 2.2.24):

SSLCompression off
● Compression can still happen on the HTTP

level

HSTS / Strict Transport Security

● HTTP-header
● Basically telling the browser:

– Don't connect if anything is wrong (e. g. wrong
certificate – this is a problem for CAcert!)

– Only connect through SSL for timespan X (e. g. 6
months)

– Can prevent SSL-Stripping

● HTTP-header:

Strict-Transport-Security max-age=31536000;

Revocation / OCSP stapling

● Old method: CRL, doesn't scale
● New method: OCSP, Problem: Privacy
● Problem: What to do when OCSP responder

not available? In theory: fail. In practice: pass.
● Chrome disabled OCSP, because it's broken

anyway
● OCSP stapling encodes OCSP response in

TLS communication
● Good idea: enable it (apache 2.4)

SNI

● Old problem of SSL: Only one certificate per
IP

● But: Server Name Indication (SNI) allows to
change that

● Almost every browser supports it! (except...
still widely used Android 2.x)

● Requires TLS 1.0
● Fallback of Firefox and other browsers to

SSLv3 causes problems with unreliable
connections

The elephant in the room

● Not focus of this talk, but:
● The SSL-system based on centralized CAs is

broken
● Horribly broken
● You trust an unknown number of entities and

each one of them can attack every connection
● It is easy to say that it's broken – it's much

harder to tell how it should be
● EFF tries:

https://www.eff.org/sovereign-keys

Further info

● SSL Observatory (talk at 27C3)
https://www.eff.org/observatory

● Check your Server:
https://www.ssllabs.com/ssltest/
https://factorable.net/

● Use HTTPS everywhere:
https://www.eff.org/https-everywhere

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

