SSL, X.509, HTTPS

How to configure your HTTPS server

Hanno Bock, http://hboeck.de/

PUBLIC
DOMAIN




HTTPS

* |t's complex

* Two protocols involving crypto — X.509 (for the
certificates) and SSL/TLS (for the data
transport)

 Many things can go wrong

e Often issues in the protocols themselves, not
just application bugs

* Test by Qualys:
https://www.ssllabs.com/ssltest/



The Problem

| configured a host with everything like “you
want it to be — as secure as possible™:
https://fancyssl.hboeck.de/

 But you won't be able to access it — at least
not if you're using Internet Explorer, Firefox,
Chrome, Safari, Opera or the Android-Browser

« w3m and lynx work

* If you don't want to wait till your browser
supports modern ssl standards:
http://fancynossl.hboeck.de/






SSL/ TLS




The certificate

» Contains public key

e Can be RSA, DSA, ECDSA, RSA-PSS...
(NTRU draft) — but in practice it's RSA

» Key length below 1024 (512 bit, 768 bit) —
you're screwed

» Key length 1024 bit — not good (CAcert still
allows it)

* Low exponents (like e=3, e=5) — can cause
Issues, but only if implementation is broken —
better use e = 65537 (default today)



RSA — random numbers?

* Did you create your key with openssl| on
Debian/Ubuntu between 2006 and 20087

* They accidently reduced randomness to PID
resulting in 15 bit key entropy

» Batch GCD-attack found 0,2 % of keys
factorable due to multiple keys using same
primes

* Check it: https://factorable.net/ (29C3
“FactHacks” talk)




Hashes

e MD5 almost-broken since 1996, broken 2004

 But some people had to learn it the hard way —
2008 fake RapidSSL subcert (25C3 talk: “MD5
considered harmful today”), FLAME-virus
attacked Windows Update via MD5

« SHA1 almost-broken since 2004, broken 201X

 But some people will learn it the hard way
(like, for example, CAcert.org)

* For now, SHA-2 (SHA256, SHA512 etc.) is
good, SHA-3 not yet usable



CAcert signatures

MD5

CAcert

root

class3

SHA256

SHA1

CAcert

class3

User cert

SHA1

User cert

Before 06/2011 After 06/2011




From SSLv1 to TLSv1.2

SSL by Netscape

SSLv2 (1999) is heavily broken, disabled in
most apps today, replaced by SSLv3 (1996)

TLS — successor of SSL, standard by IETF
TLS 1.0 (1999), 1.1 (2006), 1.2 (2008)

TLS 1.0 somewhat broken, TLS 1.1 not good
If you want to avoid SHA1 you need TLS 1.2
BUT: Browser support widely only TLS 1.0




SSL-Algorithms

« ECDHE-RSA-AES256-GCM-SHA384

* This means: RSA-signed key exchange with
Elliptic Curve Ephemeral DH, symmetric AES
encryption with 256 bit, Galois/Counter Mode,
SHA384 hash

« RC4-SHA

* This means: RSA-signed symmetric RC4
encryption with SHA1 hash



Problems

* |f the server provides many algos, user may
choose weak ones — out of server admins
control

* |f the server is restrictive, connections may fail
(old browsers)

* Fine-granular tuning sometimes impossible Iin
common software like Apache

* |In theory, everyone wants TLS 1.2 to avoid
MDS/SHA1. In practice, almost nothing
supports TLS 1.2.



Key exchange

 Key exchange — create session key that never
gets transmitted

 Diffie Hellman or Elliptic Curve Diffie Hellman
* Provides Perfect Forward Secrecy

 |f at some point in the future your server key
gets compromised, attacker cannot decrypt
previously recorded messages

* Problem: Apache defaults to 1024 bit DH and
this cannot be changed (experimental patch)



BEAS T-attack

« BEAST-attack against AES in CBC mode

* \Weakness was known for a long time, but
impractical — BEAST-attack just brought it to
the real world

* Fixed in TLS 1.1 (but: the browsers...)
* Mitigation — client-side
» Server can offer RC4-ciphers (unaffected)

» But: RC4+DHE not well supported (no forward
secrecy)



Apache config

e This is my Qualys-100 points setting:
SSLProtocol -SSLv2 -SSLv3 -TLSv1 -TLSv1.1
+TLSv1.2
SSLCipherSuite TLSv1:!IAES128:!IAES256-
GCM-SHA384:IAES256-SHA256:ISSLv3:!
SSLv2:HIGH:IMEDIUM:IMD5:ILOW:IEXP:!
NULL:!laNULL@STRENGTH



Apache config

A more reasonable setting:

SSLProtocol -SSLv2 -SSLv3 +TLSv1 +TLSv1.1
+TLSv1.2

SSLHonorCipherOrder on

SSLCipherSuite ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-RSA-AES256-GCM-
SHA384:ECDH-RSA-AES256-GCM-
SHA384:ECDH-ECDSA-AES256-GCM-
SHA384:ECDH-RSA-RC4-SHA:RC4-SHA:TLSv1:!
AES128:13DES:ICAMELLIA:!
SSLv2:HIGH:MEDIUM:IMD5:ILOW:IEXP:INULL:!
aNULL



TLS Compression / CRIME attack

 CRIME attack by the authors of the BEAST
attack

« TLSCompression is broken

* But nobody uses it anyway (limited browser
support), so just disable it

« Apache Config (only 2.4 / unreleased 2.2.24):
SSLCompression off

 Compression can still happen on the HTTP
level



HSTS / Strict Transport Security

« HT TP-header
» Basically telling the browser:

— Don't connect if anything is wrong (e. g. wrong
certificate — this is a problem for CAcert!)

— Only connect through SSL for timespan X (e. g. 6
months)

— Can prevent SSL-Stripping
« HT TP-header:

Strict-Transport-Security max-age=31536000;



Revocation / OCSP stapling

 Old method: CRL, doesn't scale
 New method: OCSP, Problem: Privacy

* Problem: What to do when OCSP responder
not available? In theory: fail. In practice: pass.

e Chrome disabled OCSP, because it's broken
anyway

 OCSP stapling encodes OCSP response in
TLS communication

* Good idea: enable it (apache 2.4)



SNI

e Old problem of SSL: Only one certificate per
IP

* But: Server Name Indication (SNI) allows to
change that

* Almost every browser supports it! (except...
still widely used Android 2.x)

 Requires TLS 1.0

 Fallback of Firefox and other browsers to
SSLv3 causes problems with unreliable
connections



The elephant in the room

* Not focus of this talk, but:

 The SSL-system based on centralized CAs is
broken

* Horribly broken

* You trust an unknown number of entities and
each one of them can attack every connection

|t is easy to say that it's broken — it's much
harder to tell how it should be

 EFF tries:
https://www.eff.org/sovereign-keys



Further info

 SSL Observatory (talk at 27C3)
https://www.eff.org/observatory

* Check your Server:
nttps://www.ssllabs.com/ssltest/
nttps://factorable.net/

 Use HTTPS everywhere:
nttps://www.eff.org/https-everywhere




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

