THE FUZZING PROJECT

Can we run C with fewer bugs?

Hanno Böck

https://hboeck.de/

1

WHO AM I?

Hanno Böck

Freelance journalist (Golem.de, Zeit Online, taz, LWN)

Started Fuzzing Project November 2014

Since May 2015: Supported by Linux Foundation's Core Infrastructure Initiative

FUZZING?

Throw garbage at software

Quick quiz: would you ever run strings on an untrusted file?

4:59 PM - 20 Oct 2014

FUZZING BINUTILS

Hundreds of bugs

THE C PROBLEM

C/C++ responsible for many common bug classes (Buffer overflows, use after free etc.)

Replacing C is good, but we'll have to live with it for a while

Mitigation: Good, but incomplete.

THE PAST

Dumb fuzzing: Only finds the easy bugs Template-based fuzzing: a lot of work for each target

AMERICAN FUZZY LOP

AMERICAN FUZZY LOP (AFL)

Smart fuzzing, quick and easy Code instrumentation Watches for new code paths

american fuzzy	lop 0.94b (unrtf)	
<pre>process timing</pre>	in, 37 sec in, 0 sec in, 21	
now processing : 0 (0.00%) paths timed out : 0 (0.00%)	map coverage	
now trying : bitflip 2/1 stage execs : 7406/13.3k (55.57%) total execs : 24.2k	favored paths : 1 (0.37%) new edges on : 118 (44.03%) total crashes : 5 (1 unique)	
exec speed : 646.5/sec - fuzzing strategy yields bit flips : 220/13.3k, 0/0, 0/0 byte flips : 0/0, 0/0, 0/0	path geometry path geometry levels : 2 pending : 268	
arithmetics : 0/0, 0/0, 0/0 known ints : 0/0, 0/0, 0/0 havoc : 0/0, 0/0 trim : 4 B/820 (0.24% gain)	pend fav : 1 own finds : 267 imported : 0 variable : 0	
L	I [cpu: 29 %	

AFL SUCCESS STORIES

Bash Shellshock variants (CVE-2014-{6277,6278})

Stagefright vulnerabilities (CVE-2015- $\{1538, 3824, 3827, 3829, 3864, 3876, 6602\}$ GnuPG (CVE-2015-{1606,1607,9087}) **OpenSSH** out-of-bounds in handshake OpenSSL (CVE-2015-{0288,0289,1788,1789,1790,3193}) BIND remote crashes (CVE-2015-{5477,2015,5986}) NTPD remote crash (CVE-2015-7855) Libreoffice GUI interaction crashes

FUZZING MATH

= 0x19324B 647D967D 644B3219 ?

16	16 crypto/bn/asm/x86_64-mont.pl				
\$		@@ -1378,7 +13	378,6 @@		
1378	1378	lea	8*8(\$nptr),\$nptr		
1379	1379	xor	%rax,%rax		
1380	1380	mov	8(%rsp),%rdx	<pre># pull end of t[]</pre>	
1381		- xor	\$carry, \$carry		
1382	1381	cmp	0(%rsp),\$nptr	# end of n[]?	
1383	1382	jae	.L8x_no_tail		
1384	1383				
Σ	\$ 00 -1491,17 +1490,10 00				
1491	1490	.align 32			
1492	1491	.L8x_tail_dor	ne:		
1493	1492	add	(%rdx),%r8	<pre># can this overflow?</pre>	
1494		- adc	\ \$0,% r9		
1495		- adc	\ \$0,%r1 0		
1496		- adc	\ \$0,%r11		
1497		- adc	\ \$0,%r1 2		
1498		- adc	\ \$0 ,%r13		
1499		- adc	\ \$0,%r1 4		
1500		- adc	\ \$0,% r15		
1501		- sbb	%rax,%rax		
	1493	+ xor	%rax,%rax		
1502	1494				
1503		L8x_no_tail:			
1504	1495	neg	\$carry		
4505	1496	+.L8x_no_tail:			
1505	1497	adc	8*0(\$tptr),%r8		
1500	1498	adc	8*1(\$tptr),%r9		
1907	1499	adc	8^2(\$tptr),%r10		
ξ.	₩ @@ -1510,9 +1502,7 @@		DUZ,7 @@		
1510	1502	adc	8*5(\$tptr),%r13		
1511	1503	adc	8*6(\$tptr),%r14		
1512	1004	adc	8*7(\$tptr),%r15		
1513		- SDD	\$carry, \$carry		
1515		- neg	%rax	# top most corry	
1010	1505	- sub	puarry, %rax	# top most carry	
1516	1506	+ auc	(φ0, 701 a.K	# cop-mose carry	
1517	1507	mov	40(%rsn) \$nntr	# restore \$mptr	
1518	1508	iii U V	40(/01 3P)/ #HPC1		
Σ	3				

0x0F FFFFFFFFFFFFFFFFFFFFF mod 1 = 0 or 1 ?

NETTLE ECC / NIST P256

ADDRESS SANITIZER (ASAN)

If you only take away one thing from this talk: Use Address Sanitizer!

-fsanitize=address in gcc/clang

SPOT THE BUG!

int main() {

}

```
int a[2] = {1, 0};
printf("%i", a[2]);
```

==577==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffe64bfb498 at pc 0x400a06 bp 0x7ffe64bfb460 sp 0x7ffe64bfb450 READ of size 4 at 0x7ffe64bfb498 thread T0 #0 0x400a05 in main /tmp/test.c:3 #1 0x7f701400262f in libc start main (/lib64/libc.so.6+0x2062f) #2 0x400878 in _start (/tmp/a.out+0x400878) Address 0x7ffe64bfb498 is located in stack of thread T0 at offset 40 in frame #0 0x400955 in main /tmp/test.c:1 This frame has 1 object(s): [32, 40) 'a' <== Memory access at offset 40 overflows this variable HINT: this may be a false positive if your program uses some custom stack unwind mechanism or swapcontext (longjmp and C++ exceptions *are* supported) SUMMARY: AddressSanitizer: stack-buffer-overflow /tmp/test.c:3 main Shadow bytes around the buggy address: =>0x10004c977690: **f1 f1** 00[**f4]f4 f4** 00 00 00 00 00 00 00 00 00 00 00 <u>Shadow byte legend</u> (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Heap right redzone: fb Freed heap region: fd Stack left redzone: f1 f2 Stack mid redzone: Stack right redzone: f3 f4 Stack partial redzone: Stack after return: f5 Stack use after scope: f8 Global redzone: f9 f6 Global init order: Poisoned by user: f7 Contiguous container OOB:fc ASan internal: fe ==577==ABORTING

ADDRESS SANITIZER HELPS

Finds lots of hidden memory access bugs like out of bounds read/write (Stack, Heap, Global), use-after-free etc.

FINDING HEARTBLEED WITH AFL+ASAN

Small OpenSSL handshake wrapper AFL finds Heartbleed within 6 hours LibFuzzer needs just 5 Minutes

ADDRESS SANITIZER

If ASAN catches all these typical C bugs... ... can we just use it in production?

ASAN IN PRODUCTION

Yes, but not for free 50 - 100 % CPU and memory overhead Example: Hardened Tor Browser

GENTOO LINUX WITH ASAN

Everything compiled with ASAN except a few core packages (gcc, glibc, dependencies)

FIXING PACKAGES

Memory access bugs in normal operation.

These need to be fixed.

bash, shred, python, syslog-ng, nasm, screen, monit, nano, dovecot, courier, proftpd, claws-mail, hexchat, ...

PROBLEMS / CHALLENGES

ASAN executable + non-ASAN library: fine ASAN library + non-ASAN executable: breaks Build system issues (mostly libtool) Custom memory management (boehm-gc, jemalloc, tcmalloc)

IT WORKS

Running server with real webpages. But: More bugs need to be fixed.

OTHER TOOLS

KASAN AND SYZCKALLER

KASAN: ASAN for the Linux Kernel. syzkaller: syscall fuzzing similar to afl

UNDEFINED BEHAVIOR SANITIZER (UBSAN)

Finds code that is undefined in C

Invalid shifts, int overflows, unaligned memory access, ...

Problem: Just too many bugs, problems rare

There's also TSAN (Thread sanitizer, race conditions) and MSAN (Memory Sanitizer, uninitialized memory)

AFL AND NETWORKING

Fuzzing network connections, experimental code by Doug Birdwell

Usually a bit more brittle than file fuzzing

Not widely used yet

AFL AND ANDROID

Implementation from Intel just released Promising (Stagefright) Android Security desperately needs it

WHAT HAS THIS TO DO WITH FREE SOFTWARE?

Remember the many eyes principle?

"Free software is secure - because everyone can look at the source and find the bugs."

We have to actually *do* that.

QUESTION TO THE AUDIENCE

Do you develop / maintain software? In C? Do you know / use Fuzzing and Address Sanitizer? If not: Why not?

THANKS FOR LISTENING

Use Address Sanitizer!

Fuzz your software.

Questions?

https://fuzzing-project.org/

