
1

THE FUZZING PROJECT
Can we run C with fewer bugs?

Hanno Böck

https://hboeck.de/

https://hboeck.de/


2

WHO AM I?
Hanno Böck

Freelance journalist (Golem.de, Zeit Online, taz, LWN)

Started Fuzzing Project November 2014

Since May 2015: Supported by Linux Foundation's Core
Infrastructure Initiative



3

FUZZING?
Throw garbage at software



4



5

FUZZING BINUTILS
Hundreds of bugs



6

THE C PROBLEM
C/C++ responsible for many common bug classes (Buffer

overflows, use after free etc.)

Replacing C is good, but we'll have to live with it for a while

Mitigation: Good, but incomplete.



7

THE PAST
Dumb fuzzing: Only finds the easy bugs

Template-based fuzzing: a lot of work for each target



8

AMERICAN FUZZY LOP



9

AMERICAN FUZZY LOP (AFL)
Smart fuzzing, quick and easy

Code instrumentation

Watches for new code paths



10



11

AFL SUCCESS STORIES
Bash Shellshock variants (CVE-2014-{6277,6278})

Stagefright vulnerabilities (CVE-2015-
{1538,3824,3827,3829,3864,3876,6602})

GnuPG (CVE-2015-{1606,1607,9087})

OpenSSH out-of-bounds in handshake

OpenSSL (CVE-2015-{0288,0289,1788,1789,1790,3193})

BIND remote crashes (CVE-2015-{5477,2015,5986})

NTPD remote crash (CVE-2015-7855)

Libreoffice GUI interaction crashes



12

FUZZING MATH
0x0505 05050505 ² mod 0x41 41414141 41414141 41412741 41414141 41414141
41414141 41414141 41414141 41414141 41414141 41414141 41414141 41414141
41414141 41414141 41414141 41414141 41414141 41418000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000005 
= 0x19324B 647D967D 644B3219 ? 

= 0x34 34343434 34343434 34341F67 67676767 67676767 67676767 67676767 67676767
67676767 67676767 67676767 67676767 67676767 67676774 74747474 74747474
74746F41 41414141 41417373 73737373 73737373 73737373 73737373 73737373
73737373 73737373 73737373 73737373 73737373 73737373 73737373 73737373
73738000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 0019324B 647D967D 644B321D ?



13



14

0x0F FFFFFFFF FFFFFFFF^0 mod 1

= 0 or 1 ?



14

15

NETTLE ECC / NIST P256
point (0xFFFFFFFF 00000001 00000000 00000000 00000000

FFFFFFFF FFFFFFFF 001C2C00, 0x9731275B 8E973CEA
FD8ABF5A 6E16A177 F05A3451 14FBC752 7B3A60BC

65FE606A) * 1 != 
point (0xFFFFFFFF 00000001 00000000 00000000 00000000

FFFFFFFE FFFFFFFF 001C2C00 , 0x9731275B 8E973CEA
FD8ABF5A 6E16A177 F05A3451 14FBC752 7B3A60BC

65FE606A )



16

ADDRESS SANITIZER (ASAN)
If you only take away one thing from this talk:

Use Address Sanitizer!

-fsanitize=address in gcc/clang



17

SPOT THE BUG!
int main() {

 int a[2] = {1, 0};

 printf("%i", a[2]);

}



18



19

ADDRESS SANITIZER HELPS
Finds lots of hidden memory access bugs like out of bounds

read/write (Stack, Heap, Global), use-after-free etc.



20



21

FINDING HEARTBLEED WITH
AFL+ASAN

Small OpenSSL handshake wrapper

AFL finds Heartbleed within 6 hours

LibFuzzer needs just 5 Minutes



22

ADDRESS SANITIZER
If ASAN catches all these typical C bugs...

... can we just use it in production?



23

ASAN IN PRODUCTION
Yes, but not for free

50 - 100 % CPU and memory overhead

Example: Hardened Tor Browser



24

GENTOO LINUX WITH ASAN
Everything compiled with ASAN except a few core packages

(gcc, glibc, dependencies)



25

FIXING PACKAGES
Memory access bugs in normal operation.

These need to be fixed.

bash, shred, python, syslog-ng, nasm, screen, monit, nano,
dovecot, courier, proftpd, claws-mail, hexchat, ...



26

PROBLEMS / CHALLENGES
ASAN executable + non-ASAN library: fine

ASAN library + non-ASAN executable: breaks

Build system issues (mostly libtool)

Custom memory management (boehm-gc, jemalloc,
tcmalloc)



27

IT WORKS
Running server with real webpages.

But: More bugs need to be fixed.



28

OTHER TOOLS



29

KASAN AND SYZCKALLER
KASAN: ASAN for the Linux Kernel.

syzkaller: syscall fuzzing similar to afl



30

UNDEFINED BEHAVIOR SANITIZER
(UBSAN)

Finds code that is undefined in C

Invalid shifts, int overflows, unaligned memory access, ...

Problem: Just too many bugs, problems rare

There's also TSAN (Thread sanitizer, race conditions) and
MSAN (Memory Sanitizer, uninitialized memory)



31

AFL AND NETWORKING
Fuzzing network connections, experimental code by Doug

Birdwell

Usually a bit more brittle than file fuzzing

Not widely used yet



32

AFL AND ANDROID
Implementation from Intel just released

Promising (Stagefright)

Android Security desperately needs it



33

WHAT HAS THIS TO DO WITH FREE
SOFTWARE?

Remember the many eyes principle?

"Free software is secure - because everyone can look at the
source and find the bugs."

We have to actually *do* that.



34

QUESTION TO THE AUDIENCE
Do you develop / maintain software? In C?

Do you know / use Fuzzing and Address Sanitizer?

If not: Why not?



35

THANKS FOR LISTENING
Use Address Sanitizer!

Fuzz your software.

Questions?

https://fuzzing-project.org/

https://fuzzing-project.org/

