
Introduction
Examples

Tools
Objections

Conclusions

The Fuzzing Project
https://fuzzing-project.org/

Hanno Böck

1 / 18

https://fuzzing-project.org/


Introduction
Examples

Tools
Objections

Conclusions

Motivation
Fuzzing
C Memory Bugs
Invalid memory access example

Motivation

Do you use tools like strings, less, file, convert, ldd, unzip, ...?

Would you use these tools on untrusted input?

2 / 18



Introduction
Examples

Tools
Objections

Conclusions

Motivation
Fuzzing
C Memory Bugs
Invalid memory access example

Fuzzing

3 / 18



Introduction
Examples

Tools
Objections

Conclusions

Motivation
Fuzzing
C Memory Bugs
Invalid memory access example

C Memory Bugs

Buffer Overflow, Stack Overflow, Heap Overflow,
Use-after-Free, Out-of-bounds, Memory Corruption, Off-by-1,
...

Summarize: Software reads or writes the wrong memory

Many security vulnerabilities are bugs in C memory handling

4 / 18



Introduction
Examples

Tools
Objections

Conclusions

Motivation
Fuzzing
C Memory Bugs
Invalid memory access example

Invalid memory access example

int main() {
int a[2] = {3, 1};
int b = a[2];
}

5 / 18



Introduction
Examples

Tools
Objections

Conclusions

Binutils
less
Let’s start fuzzing

Example: binutils

October 2014: Michal Zalewski reports a crash in strings

strings is part of binutils and parses executables (ELF, PE and
others) - did you know that?

Followup: Various people started fuzzing binutils (nm, ld,
objdump, readelf, ...) and found hundreds of memory
corruption issues - and we’re still not done

binutils 2.25: strings doesn’t parse executables by default any
more

6 / 18



Introduction
Examples

Tools
Objections

Conclusions

Binutils
less
Let’s start fuzzing

Example: less

less pipes input through lesspipe, a script that calls other
applications depending on the filetype

unzip, cpio, lha, antiword, catdoc, unrtf, rpm, msgunfmt,
dpkg, identify (ImageMagick), cabextract, readelf (binutils!),
isoinfo, ...

Many of these tools have or had memory corruption bugs that
are trivial to find via fuzzing

less itself has unfixed memory access issues (CVE-2014-9488)

7 / 18



Introduction
Examples

Tools
Objections

Conclusions

Binutils
less
Let’s start fuzzing

Let’s start fuzzing

Fuzzing finds real security vulnerabilities

It’s easy!

If you take a random piece of software that parses complex
data chances are very high that you will find crashes within
minutes

We should just fuzz everything and fix this

8 / 18



Introduction
Examples

Tools
Objections

Conclusions

American Fuzzy Lop (afl)
Address Sanitizer (asan)
Make fuzzing part of development

American Fuzzy Lop (afl)

9 / 18



Introduction
Examples

Tools
Objections

Conclusions

American Fuzzy Lop (afl)
Address Sanitizer (asan)
Make fuzzing part of development

American Fuzzy Lop (afl)

Currently most powerful free tool for fuzzing

Adds compile time instrumentation and identifies promising
code paths

Developed by Michal Zalewski (lcamtuf), found some of the
post Shellshock Bash bugs and issues in gnupg, openssh,
libjpg, libpng, ...

10 / 18



Introduction
Examples

Tools
Objections

Conclusions

American Fuzzy Lop (afl)
Address Sanitizer (asan)
Make fuzzing part of development

Address Sanitizer (asan)

Not every invalid memory access causes a crash

Addressf Sanitizer: Compile time feature to add additional
bounds checks (clang, gcc - CFLAGS=”-fsanitize=address”)

afl/asan combination is currently the gold standard of fuzzing

11 / 18



Introduction
Examples

Tools
Objections

Conclusions

American Fuzzy Lop (afl)
Address Sanitizer (asan)
Make fuzzing part of development

Make fuzzing part of development

Ideally free software projects should integrate fuzzing into
their development process

Make software fuzzing friendly!

Should not break with Address Sanitizer

Provide simple command line tools with libraries to expose
parsers

12 / 18



Introduction
Examples

Tools
Objections

Conclusions

Deprecate C
Fix C

Deprecate C

Shouldn’t we deprecate C and rewrite everything in [some
other programming language]?

Answer: Moving away from C is good for new projects

Projects like miTLS, Servo (browser engine), MirageOS are
valuable

But: We won’t deprecate C any time soon

13 / 18



Introduction
Examples

Tools
Objections

Conclusions

Deprecate C
Fix C

Fix C

Shouldn’t we use mitigations like ASLR because we can’t fix
all buffer overflows?

Answer: Yes! Unfortunately state right now is sad. Most
Linux distributions don’t enable position independent
executables by default and have weak ASLR. Better exploit
mitigations (Levee) are coming.

Exploit mitigations are either incomplete or too expensive for
real applications - fixing bugs still reduces attack surface

http://oss-security.openwall.org/wiki/

exploit-mitigation

14 / 18

http://oss-security.openwall.org/wiki/exploit-mitigation
http://oss-security.openwall.org/wiki/exploit-mitigation


Introduction
Examples

Tools
Objections

Conclusions

Not everything is bad!
Hall of shame
The Fuzzing Project
Takeaway messages

Not everything is bad!

In most cases upstream developers were happy about reports
and fixed them quickly, many start fuzzing themselves

Many people right now flood upstream devs with
fuzzing-related bug reports

Some projects that didn’t have releases for a long time were
revived (unrtf, cabextract)

bc/dc had last stable release in 200x, will soon have a new
release with fixes for fuzzing-related bugs

15 / 18



Introduction
Examples

Tools
Objections

Conclusions

Not everything is bad!
Hall of shame
The Fuzzing Project
Takeaway messages

Hall of shame

less: developers didn’t answer, new releases didn’t fix reported
issues

poppler: several unfixed open bugs, no visible activity on them

unzip: Public forum has information about memory corruption
issues posted several years ago, unfixed in current release

Dead projects are a problem (no development but active use -
e. g. procmail)

16 / 18



Introduction
Examples

Tools
Objections

Conclusions

Not everything is bad!
Hall of shame
The Fuzzing Project
Takeaway messages

The Fuzzing Project

Tutorial for beginners (Fuzzing is easy!)

Software list, the good and the bad

File samples (if you want to fuzz a Microsoft Works importer
and don’t have an input sample at hand)

17 / 18



Introduction
Examples

Tools
Objections

Conclusions

Not everything is bad!
Hall of shame
The Fuzzing Project
Takeaway messages

Takeaway messages

Fuzzing is easy - everyone involved in software development
should use it

We have powerful free software tools (american fuzzy lop,
address sanitizer)

If your software is listed on the Fuzzing Project webpage and
has no green ”OK” - do something about it!

https://fuzzing-project.org/

http://lcamtuf.coredump.cx/afl/

https://code.google.com/p/address-sanitizer/

18 / 18

https://fuzzing-project.org/
http://lcamtuf.coredump.cx/afl/
https://code.google.com/p/address-sanitizer/

	Introduction
	Motivation
	Fuzzing
	C Memory Bugs
	Invalid memory access example

	Examples
	Binutils
	less
	Let's start fuzzing

	Tools
	American Fuzzy Lop (afl)
	Address Sanitizer (asan)
	Make fuzzing part of development

	Objections
	Deprecate C
	Fix C

	Conclusions
	Not everything is bad!
	Hall of shame
	The Fuzzing Project
	Takeaway messages


