
  

SSL / TLS

How broken is it?



  

Interesting times



  

Introduction

● I'm Hanno Böck, freelance Journalist, 
administrator at schokokeks.org (webhosting)

● Long-time interest in crypto, diploma thesis on 
RSA-PSS

● This talk was planned before the NSA started 
the biggest crypto campaign of all time



  

Interactive test

● If you have a device with a browser in front of 
you, point it to:

https://fancyssl.hboeck.de
● If you have an HTTPS server, check it:

https://www.ssllabs.com/ssltest/



  

What's wrong here?

● The “wrench“ attack is active, detectable and 
doesn't work for secret mass surveillance.



  

Okay, let's talk about SSL / TLS

● Invented by Netscape in 1995 as SSLv2
● Completely broken
● SSLv3 in 1996
● Became renamed to TLS and IETF standard
● TLS 1.0 1999 (the one you're likely using today)
● TLS 1.1 2006
● TLS 1.2 2008 (support: near zero – it's just too 

new)



  

X.509 certificates

● If you use TLS, you usually also use X.509
● Certificate authorities are a mess
● But nobody has a good idea how to fix it
● EFF tried (sovereign keys – watch their talk)
● But CA fails are not our topic today
● CA attacks are active, detectable and not 

suitable for mass surveillance



  

TLS connection – what happens

● Client asks Server for Connection
● Server shows cert with public key (usually 

RSA), client checks cert
● Client/server use the public key in the cert to 

create a secret key (two ways to do it)
● They exchange encrypted and authenticated 

data with secret key (usually AES and some 
broken way of authenticating it, sometimes also 
RC4)



  

Attacks

● BEAST attack (2011)
● CRIME attack (2012)
● Lucky Thirteen attack (2013)
● RC4 attack without a cool name (2013)
● BREACH attack (2013)
● Many issues were documented before
● All protocol bugs, not software bugs



  

But let's look at certs first

● Cert is signed by certificate authorities cert 
(sometimes with intermediate cert)

● Every cert contains a public key, usually RSA
● You can also use DSA or ECDSA , but nobody 

does
● Key size can be almost anything
● But CAs today usually don't issue keys below 

2048 bits (I'm sure there are ones that still do)



  

RSA key size

● How difficult is factoring?
● 512 bit can be broken by everyone with a 

current computer, a day of time and ability to 
compile a weird tool

● EFF found 512 bit “Extended Validation“ key in 
2010

● 768 bit can be broken (2009)
● 1024 bit can be broken by someone rich (Eran 

Tromer estimates 1 million $)
● All major sites moved away from 1024 bit



  

DSA / ElGamal / DiffieHellman

● Discrete Logarithm Problem (for a^x=b mod p find x)
● Key size / security roughly the same as RSA
● DSA was fixed to 1024 bit for quite some time
● DSA is messy anyway, just don't use it. It completely 

breaks with bad random numbers.
● Not a big issue in SSL, but many GPG keys
● DiffieHellman with 1024 bits is used a lot and almost 

as insecure as RSA with 1024 bits (we'll get back to 
that)



  

Elliptic curves

● Discrete logarithm also works in a structure 
called elliptic curves

● Shorter key sizes should be secure
● ECDSA (public key signatures) and ECDH 

supported by SSL
● ECDSA rarely used, ECDH a lot
● Uses usually NIST curves with somewhat 

unclear origin



  

These NIST curves

● Created by Jerry Solinas (NSA)
● They use output of a SHA-1 function. Idea: 

SHA-1 is not invertible, so we can't create curve 
with backdoor

● Uses input values like 3045ae6f c8422f64 
ed579528 d38120ea e12196d5. Why?

● I've asked them, they promised me to get back 
on me. If they answer I'll tell you.



  

So we have a public key

● Two ways to generate session key
● Variant a: generate key, send it encrypted (bad)
● Variant b: use server key only for signing, do key 

exchange (Perfect Forward Secrecy)
● Diffie Hellman or Elliptic Curve Diffie Hellman
● DH: Apache uses 1024 bit and this can't be 

changed without patching
● Big mess: No proper way to negotiate size



  

Now we have a shared key

● We need confidentiality and authenticity
● AES encryption (or 3DES, Cammelia, all 

probably secure) in CBC mode with Padding 
and HMAC

● Or stream cipher RC4



  

Combining AES-CBC and HMAC

● Three ways
● MAC-then-Encrypt (SSL, bad)
● MAC-and-Encrypt (SSH, very bad)
● Encrypt-then-MAC (good)



  

CBC/HMAC in TLS

● Looks like this:

● Padding oracle – by bit-flipping and separating 
MAC and Padding errors, you can decrypt

● Fix: Always the same error. Good?

Data
1f ab ... 3c

Pad
03 03 03

MAC
2d ... 79

AES-CBC



  

CBC/HMAC in TLS

● Padding oracle comes back as timing attack 
(Lucky Thirteen)

● Also other attacks due to bad IV (BEAST), 
which got fixed in TLS 1.1 (that almost nobody 
uses, because its so new - 2006)

● So a lot of people (e. g. Google) said “with all 
that mess with CBC/HMAC, let's use something 
different”

● Like RC4, because there's nothing else



  

RC4

● RC4 is great – it's fast, it's simple
● Developed 1987 by Ron Rivest, not public
● Leaked in 1994 in a newsgroup
● Since then used in successful standards like 

WEP and TLS
● It's only a few lines of code – you can just copy 

the code from Wikipedia



  

Unfortunately...

● RC4 is not very secure
● It has biases at certain bits in the key stream
● Fix: Throw away 256 stream bits
● But people found more biases in later stream bits
● So throw away more stream bits
● In 2013 Dan Bernstein shows attack on RC4/TLS
● Needs Gigabytes of traffic, not very practical
● But many think RC4 is a likely target for NSA 

breakthroughs



  

So we have

● Lots of problems in CBC/HMAC (that could be 
fixed if you would use Encrypt-then-MAC)

● Some hacky workarounds
● People switch to RC4, because it's the only 

thing left that's available in widely used TLS 
version 1.0

● Dan Bernstein shows RC4 is also vulnerable
● So we can choose between AES-CBC (bad) 

and RC4 (bad)



  

Hash

● MD5 is very broken, SHA-1 is broken
● SHA-2 looks good, it's created by the very 

skilled people from the NSA
● If this makes you nervous, SHA-3 will come – 

but really, most people think SHA-2 is fine
● If collision-broken hash functions (MD5, SHA-1) 

matter depends on the use case
● For sigs they matter, for HMAC they don't
● In doubt: use unbroken hash functions



  

What about TLS 1.1/1.2

● TLS 1.1 fixes BEAST/IV problem, but not 
padding oracle / Lucky Thirteen

● TLS 1.2 has AES with authenticated encryption: 
Galois/Counter Mode (GCM)

● That fixes it – really. Also gets rid of SHA-1 
(probably no issue with SHA-1 here)

● But TLS 1.2 is so new (2008)
● Browsers slowly adopt TLS 1.2 and AES-GCM
● Webservers also slowly (but some people use 

Debian stable or Redhat Enterprise)



  

CRIME / BREACH

● CRIME attack on TLS compression
● Not a big problem: Rarely anyone uses TLS 

compression, just disable it
● BREACH attack focuses on HTTP compression
● That's a problem
● No simple solution and not clear where solution 

should be
● Involves web application security like CSRF-

Tokens (web application security is a nightmare)



  

Downgrade attacks

● If connection through TLS 1.0/1.1/1.2 doesn't 
work, major browser will retry with SSLv3

● This happens quite often, e. g. when your 
Internet connection is bad (UMTS / WiFi)

● All improvements brought to you by TLS 1.1/1.2 
are void – also non-security ones (like Server 
Name Indication)

● Reason: Broken old hardware, e. g. proxies
● Compatibility comes before security



  

Steps to a secure HTTPS Server

● Get a cert, 2048/4096 bit RSA, SHA256-signed
● Support TLS 1.2, prefer AES-GCM with ECDH 

(needs apache 2.4) or DH (patch apache) if 
you're worried about NIST curves

● Drop SSLv3 if you can (please!)
● Disable TLS compression
● Check Qualys SSL Labs test



  

Browser

● Install latest version, get TLS 1.2 support 
(Chrome already on some archs, Firefox soon)

● Install HTTPS Everywhere (maybe vulnerable 
HTTPS is better than no HTTPS)

● Disable SSLv3 if you can



  

Further interesting SSL features

● SNI – Several certs on one IP
● OCSP stapling – trying to fix the revocation 

mess (certificate revocation is seriously broken 
– Chrome “fixed” it recently by disabling)

● HSTS – enforce SSL, avoid stripping



  

Future

● Browsers will adopt TLS 1.2 with AES-GCM 
soon

● ChaCha20 stream cipher and Poly1305 mode 
for TLS

● What to do about elliptic Curves? There are 
alternatives, many people like Curve25519

● Or stick with classic algos. RSA could need 
some revamp by using PKCS #1 2.1 (but it's so 
new – from 2002) [read my thesis if you're 
interested]



  

NIST

● Many people trusted NIST a lot
● AES and SHA-3 competition received lots of 

praise
● AES: Some people still think the wrong 

algorithm (Rijndael) won and Twofish / Serpent 
are the real winners

● But almost nobody doubts security of AES
● Except if you have much more capabilities than 

the NSA (4 Terawatt)



  

Quantum computer

● Shor's algorithm Can break RSA, DSA, 
ElGamal, DiffieHellman, elliptic Curves

● Can even break elliptic Curves easier
● IBM built 7 bit quantum computer – not a 

problem if your key size is > 7 bit
● D-Wave quantum computer: no threat
● Many people think: large QC can't be built
● Some people discuss Post-Quantum-Crypto. 

It's possible, but nothing ready yet.



  

The long way of crypto

● 8 steps - And then you still have backwards 
compatibility issues – almost forever



  

More Info

● I write regularly for Golem.de and others 
(usually German) http://hboeck.de/

● Read blogs of Matthew Green 
http://blog.cryptographyengineering.com/

● Bruce Schneier https://www.schneier.com/
● Adam Langley https://www.imperialviolet.org/
● Do online university course by Dan Boneh 

http://blog.cryptographyengineering.com/



  

Watch some CCC congress talks

● 29C3 FactHacks (Bernstein, Lange, Heninger)
● 28C3 Sovereign Keys (EFF tries to fix CAs)
● 27C3 SSLiverse (EFF SSL Observatory)
● 25C3 MD5 considered harmful today
● 20C3 1024-bit RSA ist unsicher
● http://media.ccc.de



  

Or some other talks

● Matthew Green on TLS 
https://www.youtube.com/watch?
v=uP6np_oKVCk

● Adam Langley on HTTPS and web security 
https://www.youtube.com/watch?
v=LBbCec4Bp10



  

Encrypt!

● Questions? My PGP key is BBB51E42
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